

Welcome to simpleai’s documentation!

Contents:

	Introduction (this page)

	
	Search Problems:

	
	Search algorithms

	Local search algorithms

	Constraint satisfaction problems

	Search algorithms interactive viewers

	
	Machine Learning:

	
	Statistical Classification

Simple AI

Project home: http://github.com/simpleai-team/simpleai

This lib implements many of the artificial intelligence algorithms described on the book “Artificial Intelligence, a Modern Approach”, from Stuart Russel and Peter Norvig. We strongly recommend you to read the book, or at least the introductory chapters and the ones related to the components you want to use, because we won’t explain the algorithms here.

This implementation takes some of the ideas from the Norvig’s implementation (the aima-python [https://code.google.com/p/aima-python/] lib), but it’s made with a more “pythonic” approach, and more emphasis on creating a stable, modern, and maintainable version. We are testing the majority of the lib, it’s available via pip install, has a standard repo and lib architecture, well documented, respects the python pep8 guidelines, provides only working code (no placeholders for future things), etc. Even the internal code is written with readability in mind, not only the external API.

At this moment, the implementation includes:

	
	Search

	
	Traditional search algorithms (not informed and informed)

	Local Search algorithms

	Constraint Satisfaction Problems algorithms

	Interactive execution viewers for search algorithms (web-based and terminal-based)

	
	Machine Learning

	
	Statistical Classification

Installation

Just get it:

pip install simpleai

And if you want to use the interactive search viewers, also install:

pip install pydot flask

You will need to have pip installed on your system. On linux install the
python-pip package, on windows follow this [http://stackoverflow.com/questions/4750806/how-to-install-pip-on-windows].
Also, if you are on linux and not working with a virtualenv, remember to use
sudo for both commands (sudo pip install ...).

Examples

Simple AI allows you to define problems and look for the solution with
different strategies. Another samples are in the samples directory, but
here is an easy one.

This problem tries to create the string “HELLO WORLD” using the A* algorithm:

from simpleai.search import SearchProblem, astar

GOAL = 'HELLO WORLD'

class HelloProblem(SearchProblem):
 def actions(self, state):
 if len(state) < len(GOAL):
 return list(' ABCDEFGHIJKLMNOPQRSTUVWXYZ')
 else:
 return []

 def result(self, state, action):
 return state + action

 def is_goal(self, state):
 return state == GOAL

 def heuristic(self, state):
 # how far are we from the goal?
 wrong = sum([1 if state[i] != GOAL[i] else 0
 for i in range(len(state))])
 missing = len(GOAL) - len(state)
 return wrong + missing

problem = HelloProblem(initial_state='')
result = astar(problem)

print(result.state)
print(result.path())

More detailed documentation

You can read the docs online here [http://simpleai.readthedocs.org/en/latest/]. Or for offline access, you can clone the project code repository and read them from the docs folder.

Help and discussion

Join us at the Simple AI google group [http://groups.google.com/group/simpleai].

Authors

	Many people you can find on the contributors section [https://github.com/simpleai-team/simpleai/graphs/contributors].

	Special acknowledgements to Machinalis [http://www.machinalis.com/] for the time provided to work on this project. Machinalis also works on some other very interesting projects, like Quepy [http://quepy.machinalis.com/] and more [https://github.com/machinalis].

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 simpleai	

 	
 	
 simpleai.machine_learning.classifiers	

 	
 	
 simpleai.search.csp	

 	
 	
 simpleai.search.local	

 	
 	
 simpleai.search.traditional	

Index

 A
 | B
 | C
 | D
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | S
 | T
 | U

A

 	
 	astar() (in module simpleai.search.traditional)

 	
 	attributes (simpleai.machine_learning.models.Classifier attribute)

B

 	
 	backtrack() (in module simpleai.search.csp)

 	beam() (in module simpleai.search.local)

 	
 	beam_best_first() (in module simpleai.search.local)

 	breadth_first() (in module simpleai.search.traditional)

C

 	
 	Classifier (class in simpleai.machine_learning.models)

 	classify() (simpleai.machine_learning.classifiers.DecisionTreeLearner method)

 	(simpleai.machine_learning.classifiers.DecisionTreeLearner_Queued method)

 	(simpleai.machine_learning.classifiers.KNearestNeighbors method)

 	(simpleai.machine_learning.classifiers.NaiveBayes method)

 	(simpleai.machine_learning.models.Classifier method)

 	
 	convert_to_binary() (in module simpleai.search.csp)

D

 	
 	DecisionTreeLearner (class in simpleai.machine_learning.classifiers)

 	DecisionTreeLearner_LargeData (class in simpleai.machine_learning.classifiers)

 	
 	DecisionTreeLearner_Queued (class in simpleai.machine_learning.classifiers)

 	depth_first() (in module simpleai.search.traditional)

 	distance() (simpleai.machine_learning.models.Classifier method)

G

 	
 	genetic() (in module simpleai.search.local)

 	
 	greedy() (in module simpleai.search.traditional)

H

 	
 	hill_climbing() (in module simpleai.search.local)

 	
 	hill_climbing_random_restarts() (in module simpleai.search.local)

 	hill_climbing_stochastic() (in module simpleai.search.local)

I

 	
 	importance() (simpleai.machine_learning.classifiers.DecisionTreeLearner method)

 	
 	iterative_limited_depth_first() (in module simpleai.search.traditional)

K

 	
 	KNearestNeighbors (class in simpleai.machine_learning.classifiers)

L

 	
 	learn() (simpleai.machine_learning.classifiers.DecisionTreeLearner method)

 	(simpleai.machine_learning.classifiers.DecisionTreeLearner_LargeData method)

 	(simpleai.machine_learning.classifiers.DecisionTreeLearner_Queued method)

 	(simpleai.machine_learning.classifiers.KNearestNeighbors method)

 	(simpleai.machine_learning.classifiers.NaiveBayes method)

 	(simpleai.machine_learning.models.Classifier method)

 	
 	limited_depth_first() (in module simpleai.search.traditional)

 	load() (simpleai.machine_learning.models.Classifier class method)

M

 	
 	min_conflicts() (in module simpleai.search.csp)

N

 	
 	NaiveBayes (class in simpleai.machine_learning.classifiers)

S

 	
 	save() (simpleai.machine_learning.classifiers.KNearestNeighbors method)

 	(simpleai.machine_learning.models.Classifier method)

 	simpleai.machine_learning.classifiers (module)

 	
 	simpleai.search.csp (module)

 	simpleai.search.local (module)

 	simpleai.search.traditional (module)

 	simulated_annealing() (in module simpleai.search.local)

T

 	
 	target (simpleai.machine_learning.models.Classifier attribute)

U

 	
 	uniform_cost() (in module simpleai.search.traditional)

Statistical Classification

AIMA Book chapters recommended: 18.3 (Learning Decision Trees), 18.4 (Evaluating and Choosing The Best Hypothesis)

Note

To use the classification module of SimpleAI you need to have
Numpy [http://www.numpy.org/] installed.

To train and use the statistical classification algorithms in this library you
will need to write code that specifies your problem.
Essentially, this boils down to:

	Define some attributes to be used as the input feature vector by the
algorithms.

	Define a target attribute to be predicted by the algorithms.

	Give a dataset to be used as a training set by the algorithms.

This chapter explains how to use the statistical classification facilities of
simpleai with an example that can be found in
simpleai/samples/machine_learning/language_classification.py.

Defining your dataset

A dataset can be any iterable python object, and the objects being iterated
(the observations itself) can be any Python object you want.

For instance, suppose we have a dataset of sentences in some language and
the classification task is to identify the language of each sentence. Then,
it’s perfectly valid for our dataset to be a list of
(target_language, sentence_text) objects.

The example of language classification followed here is fully coded in
simpleai/samples/machine_learning/language_classification.py.

In the code, each observation is represented as a named tuple instead of just a
tuple for clarity:

class Sentence(object):
 def __init__(self, language, text):
 self.language = language
 self.text = text

Since another goal of this example is to learn a decision tree from a large
dataset without putting it in memory all at once, the dataset is read using a
custom iterator that only stores a single observation at a time:

class OnlineCorpusReader(object):
 def __init__(self):
 self.input_files = [("english", "text.en"),
 ("spanish", "text.es")]

 def __iter__(self):
 for language, filename in self.input_files:
 for text in open(filename):
 yield Sentence(language, text.lower())

With that, we can create a dataset of sentences from a file that has
a sentence of each line such as the
europarl [http://www.statmt.org/europarl/] corpus.

Defining your attributes

In order to do an automatic classification you’ll have to define what are
the attributes (the features) that are going to be used in the learning phase.

The way attributes are represented is slightly different than usual in this
library. Normally,
a classification problem uses a vector of attributes as input, in which each
value in the vector is a value of some attribute.
So if the vector has size N, you have N attributes.

To do the same thing this library you have to provide N functions, such that
each function takes an observation and returns an attribute value.
So each function is applied to the observation and the resulting N values are
the classical feature vector.

Back to the language classification example, let’s assume that our
attributes/features are the frequency counts of each letter in the sentence.
Then, we can define the attributes like this:

class LetterCount(Attribute):
 def __init__(self, letter):
 self.letter = letter
 self.name = "Counts for letter {!r}".format(letter)

 def __call__(self, sentence):
 return sentence.text.count(self.letter)

...
somewhere else:
for letter in "abcdefghijklmnopqrstuvwxyz":
 attribute = LetterCount(letter)
...

Here the attributes inherit from the Attribute class, which is recommended,
but it’s not stricly necessary. The only requirement that an attribute has to
meet is to be a callable object (a function, a method,
a class that defines __call__, etc.).

So, a bare minumum valid attribute that counts the letter "a" in a
observation could have been like this:

def attribute_count_a(observation):
 return observation.text.count("a")

And that would have been all that is needed.

If you are wondering “Why, oh, why you did it this way???!!!” it’s because not
all datasets exist as a feature vector: there could be text, there could be
images, there could be graphs, etc… so using attribute functions is a way of
explicitly (and neatly too) declaring all preprocessing done to the data
without altering the original data in any way (ie, read-only).

Defining your problem

The ClassificationProblem is where the attributes previously
defined live. In your problem it also has to be defined the target
attribute.
The target is the attribute that classifier has to guess, ie, it’s a method
that given an example from the dataset returns the correct classification
for it.

Back to the language classification example, the problem definition would be:

For example:

class LanguageClassificationProblem(ClassificationProblem):
 def __init__(self):
 super(LanguageClassificationProblem, self).__init__()
 for letter in "abcdefghijklmnopqrstuvwxyz":
 attribute = LetterCount(letter)
 self.attributes.append(attribute)

 def target(self, sentence):
 return sentence.language

Here we define an instance of the LetterCount attribute for each letter
in the english alphabet.

Once this defined, it must be stored in the attributes list of
your ClassificationProblem.
In this example, the target just returns the language of a Sentence.

Using a classifier

Once all is defined, you can train one of the implemented classifiers
like Naive Bayes or a Decision Tree.

input_files = [("english", "europarl-v7.es-en.en"),
 ("spanish", "europarl-v7.es-en.es")]

dataset = OnlineCorpusReader()
problem = LanguageClassificationProblem()
classifier = NaiveBayes(dataset, problem)

test = Sentence(None, "is this an english sentence?")
print classifier.classify(test)
test = Sentence(None, "es ésta una oración en español?")
print classifier.classify(test)

Classifier API

	
class simpleai.machine_learning.models.Classifier(dataset, problem)

	Base of all classifiers.
This specifies the classifier API.

Each classifier holds at least a dataset and a ClassificationProblem.

	
attributes

	The attributes of the problem.
A list of callable objects.

	
classify(example)

	Returns the classification for example.

	
distance(a, b)

	Custom distance between a and b.

	
learn()

	Does the training. Returns nothing.

	
classmethod load(filepath)

	Loads a pickled version of the classifier saved in filepath

	
save(filepath)

	Pickles the tree and saves it into filepath

	
target

	The problem’s target.
A callable that takes an observation and returns the correct
classification for it.

Avaliable classifiers

	Classifiers implemented:

	
	Decision tree: See http://en.wikipedia.org/wiki/Decision_tree_learning

	Naive Bayes: See http://en.wikipedia.org/wiki/Naive_Bayes_classifier

	K-Nearest Neighbor: See http://en.wikipedia.org/wiki/K-nearest_neighbor

	
class simpleai.machine_learning.classifiers.DecisionTreeLearner(dataset, problem)

	This implementation features an algorithm that strictly follows the
pseudocode given in AIMA.

It’s obviously ineficient in too many ways (perhaps incomplete too), but
it’s intended to be used pedagogically.

See the other implementations in this same file for some discusión and
issues solved.

This algorithm is equivalent to ID3.

	
classify(example)

	Returns the classification for example.

	
importance(attribute, examples)

	AIMA implies that importance should be information gain.
Since AIMA only defines it for binary features this implementation
was based on the wikipedia article:
http://en.wikipedia.org/wiki/Information_gain_in_decision_trees

	
learn(examples, attributes, parent_examples)

	A decision tree learner that strictly follows the pseudocode given in
AIMA. In 3rd edition, see Figure 18.5, page 702.

	
class simpleai.machine_learning.classifiers.DecisionTreeLearner_Queued(dataset, problem)

	
	This implementations has a few improvements over the one based on the book:

	
	-It uses a queue instead of recursion, so the python stack limit is

	never reached.

	-In case an attribute has a value not seen in training the intermediate

	nodes can give a “best so far” classification.

	-Abusive re-iteration of the train examples is avoided by calculating

	at the same time all information gains of a single node split.

This algorithm is equivalent to ID3.

	
classify(example)

	Returns the classification for example.

	
learn()

	Does the training. Returns nothing.

	
class simpleai.machine_learning.classifiers.DecisionTreeLearner_LargeData(dataset, problem, minsample=1)

	This implementations is specifically designed to handle large dataset that
don’t fit into memory and has more improvements over the queued one:

	-Data is processed one-at-a-time, so the training data doesn’t need to

	fit in memory.

	-The amount of times the train data is read is aproximately log(N) full

	iterations (from first to last) for a dataset with N examples.
This is because the gain from all splits from all leaf nodes are
estimated simultaneuosly, so every time the train data is read
completely a full new level of the tree (ie, nodes with equal depth,
leaves) is expanded simultaneously.

This algorithm is equivalent to ID3.

Is very important to note that in order to have a small memory footprint
the minsample argument has to be set to a reasonable size, otherwhise
there will be one tree leaf for every example in the training set and this
totally defeats the pourpose of having a large data version of the
algorithm.

	
learn()

	Does the training. Returns nothing.

	
class simpleai.machine_learning.classifiers.NaiveBayes(dataset, problem)

	Implements a classifier that uses the Bayes’ theorem.

	
classify(example)

	Returns the classification for example.

	
learn()

	Does the training. Returns nothing.

	
class simpleai.machine_learning.classifiers.KNearestNeighbors(dataset, problem, k=1)

	Classifies objects based on closest training example.
Uses the k-nearest examples from the training and
gets the most common classification among these.

To use this classifier the problem must define a distance
method to messure the distance between two examples.

	
classify(example)

	Returns the classification for example.

	
learn()

	Does the training. Returns nothing.

	
save(filepath)

	Saves the classifier to filepath.
Because this classifier needs to save the dataset, it must
be something that can be pickled and not something like an
iterator.

Constraint satisfaction problems

AIMA Book chapters recommended: 2 (Intelligent agents), 3 (Solving problems by searching), 4 (Beyond classical search), 6 (Constraint satisfaction problems)

SimpleAI provides you with a class that you will instantiate to represent your csp problems, and a few csp algorithms that you can use to find solutions for the csp problems.

Defining your problem

You must simply create an instance of this class, specifying the variables, the variable domains, and the constraints as construction parameters:

	variables will be a tuple with the variable names.

	domains will be a dictionary with the variable names as keys, and the domains as values (in the form of any iterable you want).

	constraints will be a list of tuples with two components each: a tuple with the variables involved on the constraint, and a reference to a function that checks the constraint.

FAQ why not merge variables and domains on one single dict? Answer: because we need to preserve the order of the variables, and dicts don’t have order. We could use an OrderedDict to solve this, but it’s only present on python 2.7.

The constraint functions will receive two parameters to check the constraint: a variables tuple and a values tuple, both containing only the restricted variables and their values, and in the same order than the constrained variables tuple you provided. The function should return True if the values are “correct” (no constraint violation detected), or False if the constraint is violated (think this functions as answers to the question “can I use this values?”).

We will illustrate with a simple example that tries to assign numbers to 3 variables (letters), but with a few restrictions.

Example:

from simpleai.search import CspProblem

variables = ('A', 'B', 'C')

domains = {
 'A': [1, 2, 3],
 'B': [1, 3],
 'C': [1, 2],
}

a constraint that expects different variables to have different values
def const_different(variables, values):
 return len(values) == len(set(values)) # remove repeated values and count

a constraint that expects one variable to be bigger than other
def const_one_bigger_other(variables, values):
 return values[0] > values[1]

a constraint thet expects two variables to be one odd and the other even,
no matter which one is which type
def const_one_odd_one_even(variables, values):
 if values[0] % 2 == 0:
 return values[1] % 2 == 1 # first even, expect second to be odd
 else:
 return values[1] % 2 == 0 # first odd, expect second to be even

constraints = [
 (('A', 'B', 'C'), const_different),
 (('A', 'C'), const_one_bigger_other),
 (('A', 'C'), const_one_odd_one_even),
]

my_problem = CspProblem(variables, domains, constraints)

Searching for solutions

Now, with your csp problem instantiated, you can call the csp search algorithms. They are located on the simpleai.search package.

For example, if you want to use backtracking search, you would do:

from simpleai.search import backtrack

my_problem = ... (steps from the previous section)

result = backtrack(my_problem)

The result will be a dictionary with the assigned values to the variables if a solution was found, or None if couldn’t find a solution.

All the implemented algorithms have their docstring defined. In any python console you can just import them and ask for their help:

help(backtrack)

The implemented algorithms are:

	
simpleai.search.csp.backtrack(problem, variable_heuristic='', value_heuristic='', inference=True)

	Backtracking search.

variable_heuristic is the heuristic for variable choosing, can be
MOST_CONSTRAINED_VARIABLE, HIGHEST_DEGREE_VARIABLE, or blank for simple
ordered choosing.
value_heuristic is the heuristic for value choosing, can be
LEAST_CONSTRAINING_VALUE or blank for simple ordered choosing.

	
simpleai.search.csp.convert_to_binary(variables, domains, constraints)

	Returns new constraint list, all binary, using hidden variables.

You can use it as previous step when creating a problem.

	
simpleai.search.csp.min_conflicts(problem, initial_assignment=None, iterations_limit=0)

	Min conflicts search.

initial_assignment the initial assignment, or None to generate a random
one.
If iterations_limit is specified, the algorithm will end after that
number of iterations. Else, it will continue until if finds an assignment
that doesn’t generate conflicts (a solution).

Using heuristics

The backtrack algorithm allows the use of generic heuristics for variable and value selections. In the help of the function are listed the available heuristics for each one, and to use them you must just import them from the same simpleai.search package.

Example:

from simpleai.search import backtrack, MOST_CONSTRAINED_VARIABLE, LEAST_CONSTRAINING_VALUE

my_problem = ... (steps from the previous section)

result = backtrack(my_problem,
 variable_heuristic=MOST_CONSTRAINED_VARIABLE,
 value_heuristic=LEAST_CONSTRAINING_VALUE)

Using Constraint Propagation (Inference)

By the default the backtrack algorithm uses AC3 as inference step. It checks arc consistency for constraints involving only two variables. That is if you have a constraint of the form (('A', 'B', 'C'), alldiff) it will ignore it. You can disable AC3 by passing inference=False to backtrack. E.g.:

result = backtrack(my_problem, inference=False)

Making a Problem Binary Constraint

If you have a problem that has n-ary constraints you may wish to try to make it binary to take advantage of AC3. Depending on the problem backtracking might run faster.

Once you have your constraints defined you can call convert_to_binary with the constraint list as a parameter, this will return a new constraint list which adds hidden variables for n-ary and unary constraints and a new domain dictionary with the domain of the hidden variables (old data should remain the same). It will also return a new set of variables which you should also, with the constraint list and domain, pass to the CspProblem class.

The domains of these hidden variables is the product of the domains of the variables for that particular constraint, filter out those values that falsify the constraint. For more information please see “On the conversion between non-binary constraint satisfaction problems (Fahiem Bacchus, Peter van Beek)”.

from simpleai.search import convert_to_binary

variables, domains, constraints = convert_to_binary(variables, domains, constraints)

my_problem = CspProblem(variables, domain, constraints)
result = backtrack(my_problem)

Local search algorithms

AIMA Book chapters recommended: 2 (Intelligent agents), 3 (Solving problems by searching), 4 (Beyond classical search)

The usage of the local search algorithms are very similar to the search algorithms explained on the Search algorithms section, so you should start by reading that section and then come to this.

We will use the same example, detailing only the changes.

Differences on the problem class

To use local search you will have to implement a problem class just as the one you implemented for search algorithms (you can use the same, of course). The only differences will be this:

	you won’t need to implement the is_goal method, because local search algorithms check for states with “better values”, and not for “goal states”.

	you must implement a new method called value: This method receives a state, and returns a valuation (“score”) of that value. Better states must have higher scores.

Example:

class Problem...

 def value(self, state):
 # how many correct letters there are?
 return sum(1 if state[i] == GOAL[i] else 0
 for i in range(min(len(GOAL), len(state))))

For algorithms that require generation of random initial states (like hill climbing with random restarts, or genetic search), you must define a new method:

	generate_random_state: this method receives nothing, and must return a randomly generated state.

Example:

import random

class Problem...

 def generate_random_state(self):
 # generate a random initial string
 # note that with this example, not always we will find a solution
 letters = ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'
 return random.choice(letters)

Special case: genetic search

For the genetic search algorithm, your problem will be quite different from the search and local search problems. In this case it must only define the following methods:

	generate_random_state: same as explained before, but notice that in this case, the generated random state must be complete, because genetic algorithms require that.

	crossover: this method receives two (complete) states, and must return a new state as a result of “crossing” both parent states (the resulting state must be complete too).

Example:

import random

class Problem...

 def crossover(self, state1, state2):
 # cross both strings, at a random point
 cut_point = random.randint(0, len(GOAL))
 child = state1[:cut_point] + state2[cut_point:]
 return child

	mutate: this method receives a (complete) state, and must return a new (also complete) state as result of generating a random mutation on the original state.

Example:

import random

class Problem...

 def mutate(self, state):
 # cross both strings, at a random point
 mutation = random.choice(' ABCDEFGHIJKLMNOPQRSTUVWXYZ')
 mutation_point = random.randint(0, len(GOAL))
 mutated = ''.join([state[i] if i != mutation_point else mutation
 for i in range(len(state))])
 return mutated

	value: same as the other local search algorithms.

Searching for solutions

This works exactly as for search algorithms.

They have help like the search algorithms, and return the same type of result.

The implemented local search algorithms are:

	
simpleai.search.local.beam(problem, beam_size=100, iterations_limit=0, viewer=None)

	Beam search.

beam_size is the size of the beam.
If iterations_limit is specified, the algorithm will end after that
number of iterations. Else, it will continue until it can’t find a
better node than the current one.
Requires: SearchProblem.actions, SearchProblem.result, SearchProblem.value,
and SearchProblem.generate_random_state.

	
simpleai.search.local.beam_best_first(problem, beam_size=100, iterations_limit=0, viewer=None)

	Beam search best first.

beam_size is the size of the beam.
If iterations_limit is specified, the algorithm will end after that
number of iterations. Else, it will continue until it can’t find a
better node than the current one.
Requires: SearchProblem.actions, SearchProblem.result, and
SearchProblem.value.

	
simpleai.search.local.genetic(problem, population_size=100, mutation_chance=0.1, iterations_limit=0, viewer=None)

	Genetic search.

population_size specifies the size of the population (ORLY).
mutation_chance specifies the probability of a mutation on a child,
varying from 0 to 1.
If iterations_limit is specified, the algorithm will end after that
number of iterations. Else, it will continue until it can’t find a
better node than the current one.
Requires: SearchProblem.generate_random_state, SearchProblem.crossover,
SearchProblem.mutate and SearchProblem.value.

	
simpleai.search.local.hill_climbing(problem, iterations_limit=0, viewer=None)

	Hill climbing search.

If iterations_limit is specified, the algorithm will end after that
number of iterations. Else, it will continue until it can’t find a
better node than the current one.
Requires: SearchProblem.actions, SearchProblem.result, and
SearchProblem.value.

	
simpleai.search.local.hill_climbing_random_restarts(problem, restarts_limit, iterations_limit=0, viewer=None)

	Hill climbing with random restarts.

restarts_limit specifies the number of times hill_climbing will be runned.
If iterations_limit is specified, each hill_climbing will end after that
number of iterations. Else, it will continue until it can’t find a
better node than the current one.
Requires: SearchProblem.actions, SearchProblem.result, SearchProblem.value,
and SearchProblem.generate_random_state.

	
simpleai.search.local.hill_climbing_stochastic(problem, iterations_limit=0, viewer=None)

	Stochastic hill climbing.

If iterations_limit is specified, the algorithm will end after that
number of iterations. Else, it will continue until it can’t find a
better node than the current one.
Requires: SearchProblem.actions, SearchProblem.result, and
SearchProblem.value.

	
simpleai.search.local.simulated_annealing(problem, schedule=<function _exp_schedule>, iterations_limit=0, viewer=None)

	Simulated annealing.

schedule is the scheduling function that decides the chance to choose worst
nodes depending on the time.
If iterations_limit is specified, the algorithm will end after that
number of iterations. Else, it will continue until it can’t find a
better node than the current one.
Requires: SearchProblem.actions, SearchProblem.result, and
SearchProblem.value.

Search algorithms

AIMA Book chapters recommended: 2 (Intelligent agents), 3 (Solving problems by searching)

To solve a search problem using SimpleAI, you will first need to program the specifics of your particular search problem. To do this, we provide you with a Problem class that you will inherit and then populate with the problem specifics.

After you have your problem defined, you can call any of the search algorithms to find a solution to the problem (if exists).

We will use a very simple example to illustrate this, the example is the problem of constructing the “hello world” string.

Creating your problem

(“why would anybody want to create a problem?”)

Your problem class will need to implement several methods, some of them depending on the algorithms you want to use.

You will always have to implement:

	actions: this method receives a state, and must return the list of actions that can be performed from that particular state.

	result: this method receives a state and an action, and must return the resulting state of applying that particular action from that particular state.

	is_goal: this method receives a state, and must return True if the state is a goal state, or False if don’t.

Example:

from simpleai.search import SearchProblem

GOAL = 'HELLO WORLD'

class HelloProblem(SearchProblem):
 def actions(self, state):
 if len(state) < len(GOAL):
 return list(' ABCDEFGHIJKLMNOPQRSTUVWXYZ')
 else:
 return []

 def result(self, state, action):
 return state + action

 def is_goal(self, state):
 return state == GOAL

if you want to use search algorithms that consider the cost of actions on their logic (like uniform cost search), then you will have to implement an extra method in your class:

	cost: this methods receives two states and an action, and must return the cost of applying the action from the first state to the seccond state.

Example:

def cost(self, state, action, state2):
 return 1

if you want to use informed search algorithms (like A* or greedy search), then you will have to add another extra method:

	heuristic: this method receives a state, and must return an integer value of the estimation of the remaining cost from that state to the solution. (remember, your heuristic must be admisible, refear to AIMA for more details on how to build heuristics).

On our example, we would add:

def heuristic(self, state):
 # how far are we from the goal?
 wrong = sum([1 if state[i] != GOAL[i] else 0
 for i in range(len(state))])
 missing = len(GOAL) - len(state)
 return wrong + missing

Finally, you have to create an instance of your problem to use it on the searching algorithms. The Problem class initializer receives one parameter: the initial_state from which the search will begin.

Example:

my_problem = HelloProblem(initial_state='')

Searching for solutions

Now, with your problem defined and instantiated, you can call any of the search algorithms. The classic search algorithms are located on the simpleai.search package.

For example, if you want to use breadth first search, you would do:

from simpleai.search import breadth_first

class HelloProblem..., my_problem = ... (steps from the previous section)

result = breadth_first(my_problem)

And what will you receive on result? You will receive the solution node from the search tree if a solution was found, or None if couldn’t find a solution. A solution node has this notable attributes:

result.state # the goal state
result.path() # the path from the initial state to the goal state

All the implemented algorithms have their docstring defined with the parameters they receive and the methods from Problem they require. In any python console you can just import them and ask for their help:

help(breadth_first)

IMPORTANT: when using graph_search=True on this methods, your states must be python inmutable values to be able to have an indexed memory of visited states. So you should use strings, numbers, inmutable tuples (composed by inmutable values), or a custom class that implements the necessary to be inmutable.

The implemented algorithms are:

	
simpleai.search.traditional.astar(problem, graph_search=False, viewer=None)

	A* search.

If graph_search=True, will avoid exploring repeated states.
Requires: SearchProblem.actions, SearchProblem.result,
SearchProblem.is_goal, SearchProblem.cost, and SearchProblem.heuristic.

	
simpleai.search.traditional.breadth_first(problem, graph_search=False, viewer=None)

	Breadth first search.

If graph_search=True, will avoid exploring repeated states.
Requires: SearchProblem.actions, SearchProblem.result, and
SearchProblem.is_goal.

	
simpleai.search.traditional.depth_first(problem, graph_search=False, viewer=None)

	Depth first search.

If graph_search=True, will avoid exploring repeated states.
Requires: SearchProblem.actions, SearchProblem.result, and
SearchProblem.is_goal.

	
simpleai.search.traditional.greedy(problem, graph_search=False, viewer=None)

	Greedy search.

If graph_search=True, will avoid exploring repeated states.
Requires: SearchProblem.actions, SearchProblem.result,
SearchProblem.is_goal, SearchProblem.cost, and SearchProblem.heuristic.

	
simpleai.search.traditional.iterative_limited_depth_first(problem, graph_search=False, viewer=None)

	Iterative limited depth first search.

If graph_search=True, will avoid exploring repeated states.
Requires: SearchProblem.actions, SearchProblem.result, and
SearchProblem.is_goal.

	
simpleai.search.traditional.limited_depth_first(problem, depth_limit, graph_search=False, viewer=None)

	Limited depth first search.

Depth_limit is the maximum depth allowed, being depth 0 the initial state.
If graph_search=True, will avoid exploring repeated states.
Requires: SearchProblem.actions, SearchProblem.result, and
SearchProblem.is_goal.

	
simpleai.search.traditional.uniform_cost(problem, graph_search=False, viewer=None)

	Uniform cost search.

If graph_search=True, will avoid exploring repeated states.
Requires: SearchProblem.actions, SearchProblem.result,
SearchProblem.is_goal, and SearchProblem.cost.

Search algorithms interactive viewers

Note

To use the viewers you need to have graphviz (on linux: sudo apt-get install graphviz), and the following pip packages:
pip install pydot flask (use sudo if on linux and not inside a virtualenv)

A common issue when solving search problems, is debugging the search
algorithms to find out why our problems aren’t being solved as expected.

And most of the time this is somewhat frustrating, because the algorithms don’t
follow a “linear” path of execution. They construct a tree, and walk this tree
by jumping and choosing specific nodes on each iteration.
This makes harder to understand where we are while debugging function calls,
because we don’t have that tree in our minds.
It becomes difficult to understand “where” the algorithm is at a given moment.

SimpleAI provides you with a tool to overcome that issue. A “map” for you to understand
where you are on the search tree at any moment. The visual execution
viewers.

How do they work? The basic idea is this: you attach a viewer to your algorithm
call, and then you are able to follow the algorithm step by step, while looking
at the search tree (and more useful information) in real time.

These viewers are meant to be used as a debugging tool, the may slow down the
algorithms a little. But are also useful to collect statistics during the
execution of the algorithms, like maximum size of the fringe, or number of
expanded nodes.

[image: _images/web_viewer_screenshot.png]

Basic usage

SimpleAI implements three execution viewers: the WebViewer, the ConsoleViewer
and the BaseViewer. From the code point of view, both viewers are used the same
way: you just need to give the search method an extra parameter called
“viewer”.

Example:

from simpleai.search import breadth_first
from simpleai.search.viewers import WebViewer

class HelloProblem..., my_problem = ... (steps from the previous sections about search problems)

my_viewer = WebViewer()

result = breadth_first(problem, viewer=my_viewer)

Once you run your program and the search algorithm is called with the attached
viewer, you will be able to interact with the execution on the way the viewer
implements it.

WebViewer

The WebViewer will start a small website, and keep waiting for interactions
done on the website (this website runs locally, so don’t worry, you don’t need
an internet connection, and no data is being sent outside your computer. You
can check the WebViewer class code if you are suspicious).

When you run your program you will see a message indicating the web server is
up, and instructions on how to stop it if you don’t want it anymore. Once the
server is up, to access the website open a web browser and navigate to this
address [http://localhost:8000/].

By default, you will see a welcome message, and you will be able to start
running the algorithm by clicking on the “Play” link. Once you click it, you
will see the search graph updating itself in real time! You can pause the
execution (“Pause” link), and also run step by step (“Step” link). Below the
graph you have useful information regarding the last event (the information box
is expanded when hovering with the mouse).

For more detailed information, you can access a log of all the past events
clicking on the “Log” link. And also you can see statistics about the execution
with the “Stats” link.

More information about the viewer controls, and the graph reference, on the
“Help” link.

The WebViewer can receive some configuration parameters (they are all optional,
if you don’t understand them just leave them with their default values):

	host (string, optional, default to ‘0.0.0.0’): by default, the website
will allow connections coming from any network address. If you want to
restrict that, then you can specify the allowed address using this parameter.

	port (integer, optional, default to 8000): the port where the website
will be listening.

Example usage:

from simpleai.search import breadth_first
from simpleai.search.viewers import WebViewer

class HelloProblem..., my_problem = ... (steps from the previous sections about search problems)

my_viewer = WebViewer()

result = breadth_first(my_problem, viewer=my_viewer)

ConsoleViewer

The ConsoleViewer is similar to the WebViewer but instead of the web graphical
interface, it has a terminal based interface. By default it will stop on each
event of the algorithm (new iteration, node expanded, …), print some
information about the event, and wait for your input. You can just press enter
to continue to the next event or use any of the several commands available to
get information about the execution. You can generate a PNG file with the
current search tree, show statistics, and more. These commands are explained on
the interactive prompt shown when you run the algorithm using the
ConsoleViewer, so they won’t be explained here.

You can also specify some configuration for the ConsoleViewer when creating it.
It allows one parameter:

	interactive (boolean, optional, default to True): You can disable all
interactions and let the algorithm run until the end.

Example usage:

from simpleai.search import breadth_first
from simpleai.search.viewers import ConsoleViewer

class HelloProblem..., my_problem = ... (steps from the previous sections about search problems)

my_viewer = ConsoleViewer()

result = breadth_first(my_problem, viewer=my_viewer)

BaseViewer

This viewer is the base for the other two viewers, and is useful when you just
want to run the algorithm and collect statics and logs, without any kind of
interaction. It doesn’t have a user interface, and won’t stop until the
algorithm has finished.

Example usage:

from simpleai.search import breadth_first
from simpleai.search.viewers import BaseViewer

class HelloProblem..., my_problem = ... (steps from the previous sections about search problems)

my_viewer = BaseViewer()

result = breadth_first(my_problem, viewer=my_viewer)

Statistics and Logs

After running the algorithm, the viewer (Web, Console or Base) will have some
interesting statistics and logs, that may be useful to analyze:

	The maximum reached size of the fringe.

	The number of nodes that were visited.

	The number of iterations performed.

	A list of all the events ocurred during the algorithm execution. Each event
is a tuple with the following structure: (event_name, event_description).

You can access those statistics and logs as attributes of the viewer instance,
after the algorithm finished, like this:

from simpleai.search import breadth_first
from simpleai.search.viewers import BaseViewer

class HelloProblem..., my_problem = ... (steps from the previous sections about search problems)

my_viewer = BaseViewer()

result = breadth_first(my_problem, viewer=my_viewer)

print 'Stats:'
print my_viewer.stats

print 'Events:'
print my_viewer.events

Creating your own execution viewer

You can also create your own execution viewer, for example if you want to debug
certain specific scenarios, or you want to generate extra statistics not
included on the current viewers. To do this, you must create a new class
inheritting from BaseViewer, and define a single method:

	event: this method receives a name and a list of optional parameters
called params. It doesn’t needs to return anything, but is really
important that you don’t forget to call the original event method using
the super function.

That method will be called each time the algorithm raises an event. The
name parameter will receive the event name, and the params parameter
will receive a list of extra objects related to the event. These are the
possible events, and the extra information each one receives on params:

	Event name

	Params

	Description

	started

	[]

	Raised every time a new run
is made. For single run
algorithms, will be just one
time. For algorithms with
restarts or multiple runs,
will be one for each run.
Has no extra params.

	new_iteration

	[fringe]

	Raised on each new iteration
of the algorithm. The fringe
param will contain the list
of nodes at the fringe when
the iteration begins.

	chosen_node

	[node, is_goal]

	Raised each time the
algorithm picks a node from
the fringe to be analyzed.
The node param contains the
chosen node, and the is_goal
param is a boolean.

	expanded

	[nodes, successors]

	Raised each time a node or group
of nodes must be expanded (their
children are generated and added
to the fringe). The nodes is
a list of the expanded nodes,
and the successors param is
a list of lists, each one being
the list of children of one of
the expanded nodes.

	finished

	[fringe, node, solution_type]

	Raised when each run of the
algorithm finishes (the same
logic as the started event).
The node param will
contain the returned node
or None when no solution was
found. The solution_type
is a string describing the
kind of solution returned.

Also, if you need to include code on the initializer of your class
(__init__ method), don’t forget to call the original __init__ using the
super function.

Example of custom viewer:

from simpleai.search.viewers import BaseViewer

class MyOwnViewer(BaseViewer):
 def __init__(self):
 super(MyOwnViewer, self).__init__()
 self.stats['iterations_with_lots_of_nodes'] = 0

 def event(self, name, *params):
 super(MyOwnViewer, self).event(name, *params)
 if name == 'new_iteration':
 fringe = params[0]
 if len(fringe) > 100:
 self.stats['iterations_with_lots_of_nodes'] += 1
 print 'Wow! an iteration with more than 100 nodes on the fringe!'

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/web_viewer_screenshot.png
localhost:8000/# - Google Chrome

localhost:8000/#
« [} localhost: Qe P &V @AET =

SimpleAl

Play Step Pause Stoprunning

412
7-e3
8-5-6
Cost: 0
Heuristic: 10

42 412 412

7-1-3 e73 73

8-5-6 8-5-6 8-5-6

Cost: 1 Cost: 1 Cost: 1
Heuristic: 12 Heuristic: 12 Heuristic: 10

4-12 4-12
7-e-3 7-5-3
8-5-6 e8-6
Cost: 2 Cost: 2
Heuristic: 10 Heuristic: 8 Heuristic: 8

expanded

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to simpleai’s documentation!

_static/up-pressed.png

_static/up.png

